Oleksiuk Dmytro(aka Cr4sh)

Applied anti-forensics: rootkits
and kernel vulnerabilities

Rootkits?

What do you think when you hear this tern?

Rootkits?

What do you think when you hear this term?

Rustock
TDSS/Alureon
ZeroAccess
Carberp

Rootkits?

What do you think when you hear this term?

ureon Boring Sh,'t

My talk about another: rootkits for the target
attacks

Different types of rootkits

The purpose of maliciouscode putscertain requirements over it

In general, the requirements are persistence and activity hiding, but
also there is some special cases

Case #1 rootkits for the massspreading malware
Prevent active infectioncuring by the popular antivirus software

Case #2 rootkits for the target attacks

Prevent active infectiondetection even by the professionatiuring
forensic analysis

The main subject of this talk

Different types of rootkits

Specific requirements dictate thenecessity of the
specifictechnical solutions

All rootkits listed above Iin thecase # and all
known Acyber-weaponZstuff are very easy
detectable

We need to design something fundamentally new
that will be good enough for the case #2

But first - let's look at the common rootkit detection
scenarios for better understanding of the task

Ways of the persistence

In order to be working the malicious code mustget execution
somehow

System service installation or using of the less obvious autoin
capabilities (documented or not) of OS

TDL 2, Rustock, Srizbi, Stuxnet, Duqu
Infection of the existing executable file
TDL 3, ZeroAccess, Virut

OS booting control modification of the boot code partition table or
playing with the UEFI bootdrivers and serviceg

TDL 4, Mebroot, Olmarik, Rovnix, UEFI rootkit b@snare

http://twitter.com/snare

Ways of the detection

Apart from getting the execution rootkits also have
to hide the evidencesof their work (we're still
talking about rootkits?)

Hidden objectsand resources of the operating
systemmake the rootkit detection more easy

How exactly?

First detection scenario

Step 1: collect the databasdlike name/ path + hash) of interesting
resources(files, system registry, boot sectorg inside the environment
of presumably infected by rootkit OS

Step 2: collect the same database but with the mountingf the target
OS system volumeénside the environment ofclear and trusted OS

Step 3: diff of the two databases will show us the resources thatere
hidden or locked by the rootkit inside the environment of the target OS

Reliability is closeto 100% in the absence oimplementation errors
Very hard for to bypass such detection

I'm using this methodsuccessfullyin the different practical cases

First detection scenario

Rootkit sample: Trojan.Srizbi.cx

!I. Jdb_rev_02_log - Notepad

File Edit Format Wiew Help

Scanning started at revision 62
Target directory: C:/WINDOWS/
MODIFIED: u’.fdb_rev_81_log’
ADDED: u’ .fdb_rev_82_log’
. [HODIFIED: u'system32/CatRoot2/dberr.txt’
[ADDED: u'system32/drivers/srt
MODIFIED: u'systemd2/MsDtc/Trace/dtctrace.log’
HODIFIED: u'system32/wbem/Logs/wbemess.log’
MODIFIED: u'Tasks/SchedlLgl.Txt®
HODIFIED: u'WindowsUpdate.log®
Scanning complete
Processed objects:
File: 14777
Directory: 659
Registry Key: @
Registry Value: @

First detection scenario

Rootkit sample: Win32.TDSS.aa

!I. Jdb_rev_02_log - Notepad

File Edit Format WView Help

Scanning started at revision 82
Target directory: C:/WINDOWS/
MODIFIED: u'.fdb_rev_81_log*
ADDED: u’ .fdb_rev_82 log°’
MODIFIED: u'system32/CatRoot2/dberr.txt’
MODIFIED: u'system32/config/SECURITY.LOG®
MODIFIED: u'system32/config/SysEvent . Eut’
(MODIFIED: u'system32/drivers/symmpi.sys'
MD5: 664AS0029D3CA216GB45BRB7 124730049

MODIFIED: u'system32/MsDtc/Trace/dtctrace.log’
MODIFIED: u'system32/wbem/Logs/wbemess._log’
MODIFIED: u'Tasks/SchedlLgU.Txt’
MODIFIED: u'*WindowsUpdate.log®
Scanning complete
Processed objects:

File: 14775

DPirectory: 659

First detection scenario

Rootkit sample: Rootkit.Win32.Agent.ailbm

R e
!I Jdb_rev_02_log - Notepad

File Edit Format WView Help

Scanning started at revision B2

Target directory: C:/WINDOWS/

MODIFIED: u'.fdb_rev_@1_log’

ADDED: u'.fdb_rev_82_log’

ADDED: u'system32/4DW4HR3c.d1l’

ADDED: u'system32/4DW4R3dsjEYnnIqt.dll*
ADDED: u'system32/4DUW4R3er(nmUlgH.d11°
ADDED: u’'system32/4DW4R3FSJRdgbRBa.d1l”
ADDED: u'system32/4DW4R3qtiyhX0DUt.d11*
ADDED: u’'system32/4DW4R3IKKEBSeDkYS]1.d11”
ADDED : u'system32/4DW4RIkoDUQuUPHCG.d11”
ADDED: u'system32/4DW4R3oRpRxBhd0Ovu . d11°
ADDED: u'system32/4DW4R3R0ObtHOLpU;.d11"
ADDED: u'system32/4DW4R3sUnolsrxmx .dll”
MODIFIED: u'systemd2/CatRoot2/dberr.txt’
ADDED: u'system32/drivers/4DW4R3 . sys’
ADDED: u'system32/drivers/4DW4R3aMkaEBBM=q.5Yys®

Second detection scenario

The malicious code also can haweothing to hide (because not
only rootkits are useful)

Developers cammasqueradethe malicious module asa legitimate
program component (from OS or &d party software)

Actually, such case immuch more harder far investigationand = _
AROARAAOGET T OEAT OOOOA O 1 OEEOOGK

keys/etc.

But we still can compare collected resources database with the
some reference

Good system administrator always knowsexactly what software
and drivers are installed on his servers and workstations. Find
somethingextraneousamong known components and data is a

much than possible

How to become undetectable?

So,for these reasons our ideal rootkitfor target attacksis strictly
prohibited to use:

All the regular ways of auterun
Existing files modification and new files creation

Interfere in the process ofOS booting with the modification ofMBR, VBR,
NTFS $Boot and so an

But where should we store themalicious code and how to pass
execution into I1t?

Maybe,firmware infection is the most obvious way?

9AO] OEAOGBO A DI xAOAEDI OAAETTI T CU
No: in practicez very expensive, depends on the specific hardware and
have a lot of other limitations

, AO6O OOT OA | Al EAET OO AI
or REG_SZ system registry value!

Windows registry rootkit

The main goal: Windows system registryz is the millions of keys and
values

There is no anycomplete documentation on all othese

Usually, the forensic analysiss limited by checkingonly a small part of

registry keys (that stores critical system settings and known autoun
locations)

The main problem : how to execute a code, that located inside a
system registry value?

| £ AT OOOAh OEA 7ET AT xO EAOAWSGO AT U
But some registry keys can contain the data that very interesting and
sensitive itself

Also, there are a lot of code and program components that read something
from the system registry, and, of course, such code can have vulnerabilities

Windows registry secret places

What interesting is kept in the system registry

Settings users password hashesertificates and secret/public keys

Maybe, anything els@

@ Registry Editor =5
File Edit View Favorites Help
4. HKEY_LOCAL MACHINE » (| Mame
> |, BCDO00000OO ab) (Default]
a- HARDWARE / 210 0000000
4- [ACPI ’
.:- Edit Binary Value
¢ 4) LENOVO
4. TP-8D__ Walue name:
|, 00001260 |% 00000000
""" FACS Walue data:
::[[;'IT' 0000 44 53 44 54 B2 F& 00 00
T 0008 01 70 4C 45 4E 4F 56 4F

ACPl.sys features

Windows ACPI driver stores a copy of the DSDT table (that was read
from the firmware) inside a system registry

sometimes this feature is used bgnthusiaststo fix the hardware vendor
bugs

DSDTz is the part of ACPI specification, this table stores machine
iIndependent subprograms, that are interpreting by ACHRdriver in the
occurrence of different powerevents

ACPI spec 4.0a6.2 ACPI System Description Tabl&s

DSDThad already gotunder the attention ofresearchers

Amplementing and Detecting an ACPI BIOS Rooi®{John HeasmanBlack
Hat 2006)

| propose to modify the copy of DSDT inside the system registry, but not
inside the firmware

http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Heasman.pdf

ACPI Design

DSDT can contain data objects and control methods

Theyforming a hierarchical ACPI namespace

Control methodsare representedin the form of an AML byte
code (ACPI Machine Language), in which compiles tipgograms
written in ASL (ACPI Source Language

Compilers and disassemblers are available toolkits from Intel and
Microsoft

) O60 BT OOEAIT A O AOI xOA '#0) 1A
with the acpikd extension forWinDbg

AML byte-code interpreter locatedinside the operating system
ACPI driver (ACPI.sys on Windows)

http://www.acpi.info/toolkit.htm
http://www.acpi.info/toolkit.htm
http://www.acpi.info/toolkit.htm
http://www.acpi.info/toolkit.htm
http://www.acpi.info/toolkit.htm
http://msdn.microsoft.com/en-us/library/windows/hardware/ff538158(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff538158(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff538158(v=vs.85).aspx

ACPI Design

ASL provides a lot of capabilities for working with the hardware
resources

OperationRegion directive (ACPI spec 4.0a418.5.89 DeclareOperation
RegionZ €an give the access to the different memory regions

Name (RegionSpace Keyword) Value
SvstemMemory 0
SvstemlIO 1
PCI Config 2
EmbeddedControl 3
SMBus 4
CMOS 5
PCIBARTarget 6
IPMI 7

ACPI Design

Example ASLcode that writes 0x1337 into the
physical memory at 0x80000000

) Lister - pe_PoC\ACPI\exmaple.txt] L= | B

®ann [lpaeka Bwg Kogwpoeka Cnpaeka 100 %

/% Define an operatin region %/
OperationRegion (FOO, SystemMemory, Ox80000000, 0x2)
Field (Fo0O, anyAcc, NoLock, Preserwve)

BAR, 16
L

/% wWrite 2 bytes to the physical memory */
Store (0x1337, BAR)

DSDT attack: my obvious idea

Write ASL program, that generates the malicious machine code
directly into the physical memory, and thery patches OS kernel
for redirecting control flow to the generated code

Read DSDT contents from the system registry

Add written program into the code of some control method, that
will be called during OS startup

Write modified DSDT back into the system registry
PROFFIT!

At the next reboot modified control method code will be interpreted
by ACPI driver and after thatz our malicious code will be generated
and executed

DSDT attack: implementation

ASL code can work only with the physical memory, so, for accessing to
the virtual memory we need to make the address translation manually

Windows stores PDEPTE tables at the constant virtual addresses
0xC0300000 0xC00000O0 (for x86)

Then we should find the address of the some kernel mode code to
patch, the using of hardcoded address is possible

Will work on NT 5.x

Will not work NT 6.x because there is kernel-mode ASLR
8 AOO EOB8O AAOOAO O 11T AEEU OEA |
field of the KUSER_SHARED _ DATA structure

This structure located at the executable memorpage with the constant
addressOxffdf0000 (at leastz up to NT 6.1 including)

The end of this page can be used to store the malicious code

DSDT attack: implementation

DEMO:
vimeo.com/56595256

https://vimeo.com/56595256

DSDT attack: the cruel reality

Unfortunately, consideredDSDT modification works
fine only on the NT 5.x and gives the stranggSoD
on theNT 6.x:

kd= 'analyze -v

ACPI_BIOS_ERROR (a5)

The ACPI Bios in the system is not fully compliant with the ACPI specification.
The first value indicates where the incompatibility lies:

This bug check covers a great variety of ACPI problems. If a kernel debugger
is attached, use ”laﬂa1¥ze -v". This command will analyze the ﬁreciﬁe problem,
and display whatever +information is most useful for debugging the specific

error.

Arguments:

Argl: 00001000,
ACPI had™s S0 T O WIHETT T O

-y ing a memory Gﬁeratiuﬂ region.
The memory operation region tried to map memory that has been

allocated for 05 usage.

The reasonz KeBugCheckExall inside the ACPl.sys

